Adjoint-Based Optimization for Rigid Body Motion in Multiphase Navier-Stokes Flow
نویسندگان
چکیده
We consider the numerical simulation of rigid body motion in multiphase incompressible Navier-Stokes flow. The motion is formulated as an optimization problem and determined by minimizing an objective function in terms of forces and moments acting on the body, constrained by the multiphase Navier-Stokes equations. The corresponding adjoint system and boundary conditions are derived and derivatives of the objective function are determined. Numerical experiments include the flow around a NACA hydrofoil, a box and the standard benchmark KRISO Container Ship (KCS). We obtain a considerable speedup compared to current state-of-the-art methods.
منابع مشابه
Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملAdjoint-based Unsteady Airfoil Design Optimization with Application to Dynamic Stall
This paper presents the development and application of an adjoint-based optimization method to designing airfoils with the objective of alleviating dynamic stall effects in helicopter rotor blades. The unsteady flow problem is simulated using the NSU2D code, which is a two-dimensional unsteady, viscous, turbulent Reynolds averaged Navier-Stokes (RANS) finite-volume solver. The corresponding adj...
متن کاملOptimum Aerodynamic Design Using the Navier–Stokes Equations1
This paper describes the formulation of optimization techniques based on control theory for aerodynamic shape design in viscous compressible flow, modeled by the Navier–Stokes equations. It extends previous work on optimization for inviscid flow. The theory is applied to a system defined by the partial differential equations of the flow, with the boundary shape acting as the control. The Fréche...
متن کاملOptimum aerodynamic design using the Navier-Stokes equations
This paper describes the formulation of optimization techniques based on control theory for aerodynamic shape design in viscous compressible flow, modelled by the Navier-Stokes equations. It extends previous work on optimization for inviscid flow. The theory is applied to a system defined by the partial differential equations of the flow, with the boundary shape acting as the control. The Frech...
متن کاملSolution of the Unsteady Discrete Adjoint for Three-Dimensional Problems on Dynamically Deforming Unstructured Meshes
The formulation and solution of the adjoint problem for unsteady flow simulations using the Reynolds-averaged Navier-Stokes equations in the presence of dynamically deforming unstructured meshes is demonstrated. A discrete adjoint approach is used, and the full linearization is built up in a systematic and modular fashion. Discrete conservation in the analysis problem is ensured through the geo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015